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AJlstrllct- The paper examines analytically the role of curvature on the stress distribution of a
curved interfacial crack between dissimilar isotropic solids. The crack-tip fields under in-plane and
antiplane shear loading are studied, respectively. Using an asymptotic expansion of the circular
interface geometry, the asymptotic solutions of the stress and displacement fields in the vicinity of
the curved crack tip derived from modified stress functions is obtained. The eigenfunctions associated
with the eigenvalues). for the curved crack consist of not only";' terms, but also ,..'.+1, ,..'.+2, ... terms.
In some cases, the terms ,.-'+I(lnr), ";'+2(ln r), etc. may also exist. Two examples, frictionless contact
near the circular crack-tip under in-plane loading and circular interfacial crack subject to antiplane
shear loading, are derived in a closed-form asymptotic solution to elucidate the curvature effect.
The case of fully open interfacial crack is also briefly described. Comparing the eigenfunction
solutions of straight interfaces, the curvature effect enters the stress fields from the third-order term
of the asymptotic solution for both cases. The condition for the existence of the r l!2(1n r) term in the
circular interfacial crack with frictionless contact is presented explicitly. Copyright © 1997 Elsevier
Science Ltd.

INTRODUCTION

Precise determination of failure mechanism and failure criteria requires rigorous stress
analysis in the vicinity of the flaws in the material or structure. For plate-like composite
structures with delamination, Williams (1959) first addressed a problem ofinterfacial cracks
between dissimilar isotropic materials along a straight interface. The stress exponents
including strength of singularity and associated angular distributions were obtained from
eigenfunction techniques. The analysis of the interfacial crack results in a rapid oscillation
of stresses in a region near the crack tip. This problem was further studied by Erdogan
(1963), England (1965), Erdogan (1965), Rice and Sih (1965) and Comninou (1977).
Recent papers by Rice (1988), Gautesenand Dundurs (1988), Suo and Hutchinson (1990),
indicated a renewed interest of the subject and gave further assessments of this topic. The
complete stress fields for delaminated composite plates can be determined by the exact
stress exponents and angular distributions embedded in a special numerical scheme such as
the singular hybrid element (Wang and Yuan, 1983).

For delamination in curved composites between curved layers or for debonding
between the fiber and the matrix in the microscale, the stress field near the curved crack
received relatively less attention. England (1966) studied a circular interfacial crack between
dissimilar isotropic materials. The oscillatory singularity which is identical to that in the
straight crack was also found. A similar statement was also made by Perlman and Sih
(1967). Aksentian (1967) used an asymptotic expansion method to investigate the dissimilar
isotropic solids joining along a t1lree~dimensional curved wedge. In the vicinity of the curved
wedge the order of the singul.arityappears to be the same as that in the two-dimensional
plane wedge problem. Dempsey and Sinclair (1979) studied two-dimensional straight wedge
problems with various wedge boundary conditions and derived conditions for existence of
logarithmic singularity in homogeneous materials. Ting (1985) studied the stress dis­
tribution at the apex of two-dimensional curved wedges using asymptotic solutions. He
concluded that the singularities remain the same as in the straight wedge, whereas the effect
of curvature only changes the form of the eigenfunctions. In addition, the curved wedge
may induce logarithmic eigenfunction terms in the higher order asymptotic expansions.
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In this paper, the curvature effect on the crack-tip stress distribution between dissimilar
isotropic solids is quantitatively identified. Two examples are demonstrated: circular inter­
facial crack between dissimilar isotropic solids under in-plane and antiplane loading. In
particular, a circular interfacial crack under in-plane loading with frictionless contact and
the composite under antiplane shear are solved in a closed form up to higher order
asymptotic expansions to identify the curvature effect.

CURVED INTERFACE CRACK WITH FRICTIONLESS CONTACT

Consider a semi-infinite planar crack along the interface between two dissimilarly
linear-elastic isotropic solids. The polar coordinate (r,O) is located at the crack tip. Fol­
lowing Williams' approach (1957), a separation of variables solution for the stress function
is suggested by F = ,-A +2f(O, A) = ,-A+2p(O, A)ain terms ofseries ofeigenfunctions. The stresses
and displacements are then expressed as (Williams, 1959)

tT = ,-AS(O, A)a, u = ,-A+ IU(O, A)a

where

[

Lr ] [ (A+2)p+p" ]
S= Lo = (A+l)(A+2)p u=[UrJ =~[-(A+2:P+(K+l)q'/AJ

Uo 2x4 2JJ. -p +(K+ l)q
L,o 3 x 4 - (A + 1)p'

p = [sin(A +2)0, cos(A +2)0, sin 1.0, cos 1.0]

q = [0, 0, - cos AO, sin ;.0]

(1)

(2)

(3)

(4)

1

3- V

and JJ. is the shear modulus ; K = 1+v

3-4v

for plane stress

for plane strain

The prime in eqns (2), and in the sequel, represents the derivative with respect to O. The
unknown vector a is dependent on A. When the interfacial crack between dissimilar isotropic
solids is lying on a straight line, the boundary conditions for the crack with frictionless
contact shown in Fig. 1 are

y
(1)

(2)
Fig. I. Interfacial crack with straight boundaries.

x
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r~J)(r,O) = t~~)(r,O), l1~I)(r,O) = l1~2)(r,0), u~I)(r,O) = u~2)(r,0), u~I)(r,O) = u~2)(r,0)

(6)

where all the quantities referred to material 1 are identified with superscript (1) and those
referred to material 2 with superscript (2).

Using matrix notations, eqns (5) and (6) can be written as

(7)

where the 8 x 8 matrix Ko()') is given in the Appendix and

(8)

A nontrivial solution of eqn (7) leads to

Evaluating the determinant, the admissible eigenvalues are given by Comninou (1977), that
is

or

sin 3 A7l:COsA7l: = 0 (A> -1)

A=n-~, A=n, n=0,I,2,3, ....

(9)

(10)

The eigenvectors and stress fields associated with the first three eigenvalues, A= -1/2, 0,
and 1/2 have also been obtained. In fact, the eigenvectors and stress fields corresponding
to any eigenvalue can be conveniently expressed as
(a) eigenvalues A= n-I/2, (n = 0, 1,2,3, ...)

k
A = (A+ I)(A+2)

x [2+A(I-P) 0 -(A+2)(l-P) 0 2+A(I+P) 0 -(A+2)(I+P) O]T (11)

l1~1) = -krl{[2+).(I-P)] sin(A+2)O-(A-2)(1-P) sinAO}

l1~I) = kr'{[2+A(1-P)] sin(A+2)O- (A+2)(I-P) sinAO}

r~) = -krl{[2+A(I- P)] COS(A+ 2)0- A(1- P) cos AO}

l1~2) = -krl{[2+ A(1 + P)] sin(A+ 2)0- (A- 2)(1 + P) sin AO}

l1~2) = krl{[2 + A(1 + P)] sin(A+ 2)0 - (A + 2)(1 + P) sin AB}

r~~) = -kr"{[2+A(1 + P)] COS(A + 2)O-A(1 + P) cos AO}

where k is an undetermined constant for each fractional eigenvalue;
(b) eigenvalues A= n (triple roots), (n = 0, 1,2,3, ...)

(12)

(13)
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D I == [0 l+a-(A.+2)(a-p) 0 (A. + 2)(a-p) 0 I+a 0 O)T

D2 == [0 I-a 0 0 0 I-a+(A.+2)(a-p) 0 -(A.+2)(a-PW

D3 == [A.(I-a) 0 -(A.+2)(I~a) 0 A.(I+a) 0 -(A.+2)(I+a) of (15)

(J~I) = - c, r'{[l +a- (A. + 2)(a- P») cos (A. + 2)9+ (A. - 2)(a- P) COSA.O}

- c2,-'(I- a) cos(A. + 2)9

- c3r.l(l- a)[A. sin (A. + 2)0- (A. - 2) sin A.O)

(J~l) = c, r.l{[l +a- (A.+2)(a- P») cos(A.+ 2)9+ (A. + 2)(a- P) cos A.O}

+c2r'(I-a)cos(A.+2)9

+ c3r.l(I - a)[A. sin (A. + 2)0 - (A. + 2) sin A.O)

,~~) = c, r.l{[1 +a- (A. + 2)(a- P») sin(A.+ 2)9+ A.(a- P) sin AO}

+ c2 r.l(l-a) sin (A. + 2)9

+ c3 r.l(l-a)A.[ -cos(A.+2)9+cosA.0) (16)

(J~2) = -c,r.l(l +a) cos(A.+2)9

- c2r' {[I - a+ (A. + 2)(a - P») cos(A. + 2)9 - (A. - 2)(a - P) cos A.O}

- c3 r.l(l +a)[A.sin(A+2)9-(A.-2)(I +a) sinA.O)

(J~2) = c,r.l(l +a) cos(A+2)9

+C2r;' {[l- a+ (A+ 2)(a- P)] cos(A.+ 2)9- (A+ 2)(a- P) cos AO}

+ c3r;'(1 +a)[A. sin(A + 2)0- (J.+2)(I +a) sin AO)

r~~) = clrl.(I +a) sin(A+2)0

+ c2r'{[l-a + (A + 2)(a - P») sin(A+ 2)9- A(a - P) sin Ae}

+C3';'(l +a)A.[ -cos(A.+2)9+cosA.0) (17)

where cl , Cb and C3 are undetermined constants for each integer eigenvalue, respectively. a
and Pare the Dundurs' parameters defined as

a=/12(K I +I)-/1,(K2+1) p=/12(K I -I)-/1,(K2-I).
/12(K I + 1)+/1, (K 2+ 1) /12(K, + 1)+/11 (K 2+ 1)

The three-term asymptotic expansion of the stress field for the straight crack is written as

where aY), a~), and a~) are vectors which can be obtained from eqn (7) and the corresponding
eigenvectors, AI.l~ -lib AI.l~o, and AI.l=1/2 given in eqns (11) and (15). k" k 2 are arbitrary
constants. Note that a~) contains two arbitrary constants c, and C2 (see eqns (16) and (17».
The terms associated with C3 are zero for A = O.
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Fig. 2. (a) Interfacial crack lying on circular arc; (b) positive directions of n, (I" t,), and (1m I').

The interface crack is lying on a smooth curved line shown in Fig. 2. The boundary
conditions are

t~]) = 0 onr t t~]) = t~2) onr] and r 2

t~2) = 0 on r z U~I) = U~2) onr[ and r 2

t~l) = _t~2), t~]) = _t~2)

u~]) = U~2), U~I) = U~2)
on r 3

(19)

(20)

where (to, tr ) are the components of surface tractions t, (tS't r ) are the shear and normal
tractions on the crack surfaces, and

(21)

(22)
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(n" no) are the components of the unit outward normal n to the boundaries. Assume that
in the vicinity of the crack tip the angle () on each curved boundary r j can be asymptotically
expressed by

(23)

For an interface crack lying on a circular arc with the radius of curvature being a, the
equation of a circle of radius a centered at (0, a) is

r=2asin(), 0<()<2n.

The values of ()m ()J, 82, ... in eqn (23) are given by

1
83 =--,.,

48a3
(24)

(25)

On the curved boundaries, the assumed stresses and displacements can still be represented
in the form (1). However, the values of () do not remain fixed. Using Taylor's theorem, S
and U on the boundaries can be expanded as

S«(), A) = S(8o. A) + ()l S/(8o. A)r+ [2()2S/«()o, A) + ()is''(()o, A)]r2/2 + ...

U«(), A) = U(8o, A) + 81U'«()o, A)r + [282U'«()o, A) + (JiU"(8o. A)]r2/2 + . . . . (26)

In order to satisfy the boundary conditions on the curved lines C, consider the following
form of stress function for a given A (Ting, 1985, Dempsey and Sinclair, 1979)

where band c, ... are assumed to depend on A. The stress function yields the expressions
for stress and displacements

(J = 1""S(8, A)a +,-1+ 1 {(in r)S«(), 1.+ l)b+ :1. [S«(), 1.+ l)]b+ S(8, 1.+ 1) :~} + 0(r.l+ 2
)

(28)

u = r.l+ I U«(), A)a + ,-1+2 {(In r)U(8, 1.+ l)b+ :1. [U(8, 1.+ l)]b + U«(), 1.+ 1) :~}+ 0(1""+3).

(29)

Substituting (28) and (29) into (19) and (20), using (24)-(25), and equating coefficients of
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like powers of r in each equation, we have 24 linear equations for a, b, and db/dA which
can be written in the matrix form:

(30)

(31)

(32)

where

(33)

with Ko(A) and K\(A) given in the Appendix.
Since eqn (30) is identical to eqn (7), Aand A remain the same as the case of interfacial

crack with straight boundaries. Equations (31) and (32) govern Band dB/dA which represent
the curvature effect. The eigenvalues determined by eqn (30) form an infinite sequence .1.1>
.1.2, ••• and can be ordered -I < Al < .1.2 < .1.3 < ... accordingly.

First, consider the solutions for Band dB/dA associated with the stress singularity
A = -1/2. Since

IIKo(A+ 1)11 = 0

a
aA1IKo(A+ 1)11 # 0

and the rank of Ko()'+ I) is 7, B has a unique solution (Zwiers et al., 1982, Dempsey and
Sinclair, 1979). Because .1.= -1/2 and .1.+ I = 1/2 are both eigenvalues, from eqns (30),
(31), A and B can be symbolically rewritten as

(34)

where A.l and A.l+
'

are eigenvectors corresponding to A and .1.+ I, respectively, and are
given in (11), k and e are proportional constants.

Inserting eqn (34) into eqn (32), the solution for dB/dA can be written in the form

dB k (dB)
dA = 2a dA p +cA I/2 (35)

where c is an arbitrary constant and (dB/dA)p is a particular solution for the following
equation

(36)

for A= - 1/2 are given in the Appendix.
The value of e can be uniquely determined from the solvability condition of eqn (36).

That is, the ranks of Ko(A + I) and the augmented matrix
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are the same (Hilderbrand, 1965). After extensively mathematical manipulation, the solv­
ability condition of eqn (36) leads to

while the solution of (dB/dA)p is

4
e =-[3

1t
(37)

where

64 {32 64[32
---

75 1t 75 1t

e:~} -(1 +3(3) (d:;»)p - (1-3[3)

0 0

(1+9{3) (1-9[3)

(38)

Similarly, we can determine the other higher-order terms with order 0(";'+2), ... in eqn (28)
for A= - 1/2. Repeating the same procedure for A= A2' A3' ... and substituting the solutions
for A, A, B, and dB/dA into eqn (28) leads to the asymptotic solutions for stresses in the
case of curved cracks. The four-term expansion of the stress field for the circular interfacial
crack with closed tip has the form

k l 1/2 { (j) a u) (db
U») I }+ 2 r e(1nr)S(0,1/2)8] +e ~l [S(O,A.+ 1)]I.l= -1/2 8 3 +S(0,1/2) -d'

a VII. A p.l= -1/2

where k l , k 3 are amplitudes.
Note that the undetermined constants k j are functions of the curvature. The term

associated with c in eqn (35) has been absorbed in the last term of eqn (39). It can be seen
that the terms r- I

/
2 and rO remain the first and the second term. The angular distributions

for the first two terms are the same as the case of straight cracks. However, the third and
higher order terms of circular cracks are different from that of straight cracks. Indeed, eqn
(39) shows that the new rl

/
2(1n r) term becomes the third order term; while the r l

/
2 term

which is the third term for the straight crack is the fourth order term for the circular crack.
In the case of [3 = 0, thereby B = 0, eqn (39) reduces to

(40)

where
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( db
U») I = [0 -lOW·

dA. p.l= -1/2

649

Here the term r l/2 becomes the third order term. However, the angular distribution of the
third term for the circular crack is different from the crack with straight boundaries.

Let

aij3 = t.iO, 1/2)[83 + 2~~ (:~) I ]
3 p.l=-1/2

then qij3 calculated from eqns (12-13) represents explicitly the stress distribution of the
third term for p= O. Note that the superscript (j) has been dropped because the angular
distribution in the case is independent of material properties. Figure 3 shows the stress
angular distribution in terms of a polar diagram for different degrees of curvature effect
~ = kd(2ak3). A circle representing zero value is demonstrated in each figure for reference.
The stress angular distribution for the straight crack (a ~ 00 or ~ = 0) is also shown for
comparison. It can be seen that the distribution differs drastically as the curvature effect
increases. The symmetric pattern of iT'3 and Q03 and antisymmetric angular distribution of
iT.03 for the straight crack has been distorted by the curvature.

The analysis can also be extended to a fully open interfacial crack. Allowing the
eigenvalue A. to be complex-valued (Williams, 1959; Rice and Sih, 1965; and Symington,
1987), the new form of stress functions for the curved crack can be introduced as

The same matrix equations of eqns (28-32) in the fully open crack case can be obtained by
performing a similar analysis. In this case, more compact forms of matrices Ko(A) and K](A)
can be expressed by

N.S(~ n, A.)]
-NoS(O, A)

-U(2)(0,A.)

(42)

[

N)S(n, A.)-NoS'(n,A)

KI(A.) = 0
- [N I S(O, A.) - NoS'(O, A)]

U'(l) (0, A.)

N I = [~ : ~J

N,S( -n,A)~N.S'(_n,A)]
N(S(O, A.) - NoS'(O, A)

- U'(2) (0, A.)

(43)

A nontrivial solution of Ko(A.) = 0 leads to the characteristic equation (Symington, 1987)

(44)

The admissible eigenvalues are given by
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-- ~ =0 (Straignt Crack)

0.5
---_. 1

-- ~ = 0 (Straight Crack)

O.S
_. - _. 1.0

.- .....,

.'

,
I ,,- ..... I

\ ;
Ii

,.:
.~

...,"
J '1

I i
/ I

" I
... ..

10

-- ~ = 0 (Straight Crack)

O.S ..""
- • - - • 1.0 I " ~ • 0'193

Fig. 3. Stress angular distribution of the third term asymptotic expansion for circular interfacial
crack with frictionless contact under inplane loading.
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il=n-~±ie, il=n, n=O,I,2, ...

651

e = ~ln(1 +P) (45)
2n 1-P

where Pis a Dundar's parameter.
Each eigenvalue in eqn (45) defines an eigenfunction. The eigenvectors A.l = [a(l) a(2)V

associated with complex eigenvalues il = n - ~ ±ie can be expressed as

[
1+(il+l)e-2lt"

a( I) = i --'---,,-----'-----
il+2

1-(il+l)e- 2lt"

il+2

il+2 -i, Irrf·

The eigenvectors A.l = [a(l) a(2)V associated with integer eigenvalues il = n are

aUJ=[-iil~2' -I, i, Ir(l+(-I)U)IX]~ j=I,2

where rf and ~ are undetermined complex constants.
From eqn (45), infinitely many eigenvalues il and associated eigenvectors A.l can be

found. For a given eigenvalue il, since il+ 1 is also an eigenvalue (see eqns (45», eqn (31)
shows that B is proportional to eigenvector A.l+ I ' Therefore, A and B in eqns (31) and (32)
can be expressed as

(46)

where A.l, A.l+ I are properly normalized eigenvectors. k and e are two arbitrary constants.
Substituting eqn (46) into (32), and letting il = ill = -~+ie lead to the solution for dB/dil
in the form

dB k (dB)
dil = 2a dil p + cA;.+ I

(47)

where c is an arbitrary constant, (dB/dil)p is a particular solution of the following linear
equations

(48)

Note that II Ko(il + 1)11 = 0 and rank of Ko(il+ I) is seven. e can be determined for the
solvability condition of the nonhomogeneous eqns (48). For a general system of algebraic
equations, Ax = b, the solvability condition for the case of IIAII = 0 can be written as
(Nayfeh, 1981, and Hilderbrand, 1965)

(49)

where the overbar denotes the complex conjugate, the superscript represents the transpose,
and u is defined by
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A*u =0 (50)

where A* = AT.
Imposing the solvability condition on eqn (48), we have

(51)

Similarly, the higher-order terms with order 0(,;·+2), ... in eqn (28) for A = Al can be
determined. Following the same procedure from eqn (47) to eqn (51), the solutions dB/dA
for A = A2' A3' ... can be obtained. By adding the eigenfunctions given by eqn (29) for
A = )'1> A2' ... , the asymptotic solution for stresses is

U·) { ..l Ul 1 ..11 [ U) as(8'A+I)1 u·)
t1 = k 1 ,'S(8, Adal + 2a" + e(ln r)S(O, Al + 1)a3 +e OA _ 83

1-1,

+k 2 {';'2S(8, A2)a~il +';'2 + I [ •• ·n
+k 3 {r13 S(8, A3)aY) + ... }+ ... (52)

where k 1, k2, k 3 ••• are arbitrary constants. It is understood that the real part of the right
hand side of eqn (52) should be taken. Rearranging the above expansion according to the
power of r, knowing that Al = -~+i£, A2 = 0, A3 = ~+i£, ... , we obtain, as, -+0,

';'3 [e.k l OS(8,A+ 1)1 (8 A ) db
U

)I k U)] ...
+ 2a OA +S , 3 QA' + 38 3 + .

1=1, 1=1,

It can be easily seen that ,;., and ';'2 are the first- and second-Of'der terms, respectively.
';'3{ln r) is the new third-term associated with the curvature effect, while ';'3 becomes the
fourth-order term.

INTERFACIAL CURVED CRACK UNDER ANTIPLANE SHEAR

Assume that a stress function for antiplane shear is written as

where p=[-sin(A+I)O, -cos<A+I)O], a=[al> a2]T.
Then the stresses and displacement are

T = ';'S(O, A)a, w = r1+ 1W(8, A)8

(53)

(54)
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[
-cos(A+ 1)8 sin(A+ I)8J

S(8,A) = (Je+I) ,
sin (A, + 1)8 cos(l+ 1)8

I
W(8,l) = --[cos(Je+I)8 -sin(Je+I)8]

Il

653

(55)

and Il is the shear modulus.
For an interfacial crack lying on a straight line, the boundary conditions and interfacial

continuity condition are

,~I) = ° at 8 = n

,~Z) = ° at 8 = - n

or using a matrix form

w(1) = w(Z) at 8 = ° (56)

where

[

N"S~•• l) N.S(~ n, l)]

Ko(Je) = NoS(O, Je) - NoS(O, l)

W(I)(O,l) - W(2)(O, 1)

No = [0 I] A = [a(l) a(Z)f.

Equation (57) yields the following characteristic equation and admissible eigenvalues

IIKo(l) II =-(Je+ 1)3 SinAnCosJe1t(~ + ~)=°
III Ilz

or

Je=n-~, A=n, n=0,1,2,3, ...

(a) eigenvalues..1. = n-I/2 (n = 0, 1,2,3, ...). The eigenvectors and stress fields are

A,l = [0 I 0 I]T

r~) = k,l (1 + I) sin(l + 1)8 r¥) = k,l(l + I) cos(Je + 1)8

(b) eigenvalues Je = n (n = 0, 1,2,3, ...). The eigenvectors and stress fields are

A,l = [Ill ° Ilz O]T

,~) = -k,l(l+ 1)lljCOS(A + 1)8 ,¥) = k,l(l+ 1)llj sin(..1.+ 1)8 j = 1,2.

(57)

(58)

(59)

The asymptotic expansion of the near crack-tip stress field for each region in the case of
straight crack is

where
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(61)

For an interface crack lying on a smooth curved line, the boundary conditions and
continuity condition on the interface are

t(J)=o onr1

t(2) = 0 on r 2

where t is a surface traction vector

(62)

t = Nt N = [n" no] (63)

(n" no) are polar components of the unit normal n to the boundaries. For an interfacial
crack lying on a circular are, the eqns (23-25) hold. Using (25) leads to

(64)

where

On the curved boundaries, expanding 8 and W of eqn (54) in a Taylor series form in
r we obtain

8(0, A) = 8(00 ) + OJ 8'(00 , A)r+ [20 28'(0°' A) + Or8"(00, A)]r2 /2+, ..

W(O, A) = W(Oo> A) +0 1W'(Oo, A)r+ [20 2W'(Oo, A) +OrW"(00,A)]r2/2+···. (65)

To satisfy the boundary conditions and interface conditions, consider the following modified
stress function for a given A

(66)

Then the expressions for stress and displacement can be written as

Substituting (67), (68) into (62), using (64)-(65), collecting the terms with the same
power of r and equating the coefficient of each power of r in each equation to zero, we have
the system of linear equations

(69)

(70)

where B = [b(1l, b(2)F, Ko(A) is given in eqn (58) and
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[

NjS(1t,A)-NoS'(1t, A) 0 ]

o N[S(-1t,A)-NoS'(-n,A)

-[N1S(O,A)-NoS'(O,A)] N[S(O,A)-NoS'(O,A) .

W(ll(O,A) -W(2l(0,A)
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(71)

Comparing eqn (69) with eqn (57), it is clearly seen that Aand A are identical to those
of the crack with straight boundaries; while the vector B is determined in terms of A from
eqn (70) for each A. Using the solvability condition of nonhomogeneous eqn (70) and
solving eqn (70) for A= -1/2, we obtain Bl =I/2. Substituting A and B back into (67)
with A= - 1/2 and adding the second term with order rO, the first three-term asymptotic
expansion of the near circular crack-tip stress field in the following form for each material
is:

where

b =[~J

It is worth noting that if the curvature changes its sign (for instance, from convex to
concave), the vector b also alters its sign. In order to validate the asymptotic solution of
curve crack-tip stress field, a circular-arc crack lying along the interface in an infinite body,
which is subjected to the externally applied antiplane stress, r x = r;', ry = r'; is considered.
The complex exact solution for the stress field has been obtained by Yang and Yuan (1995)
and is expressed as :

(73)

where r'; = rOO sin P, r;' = rOO cos p. 0( and Pin this subsection denote the half of the crack
angle and the loading direction with respect to the x-axis, respectively. (p, cp) are the polar
coordinates with origin at the circular center and z = p ei'fJ.

Expanding (73) for small r from the crack tip z = a eio and introducing a local polar
coordinate system (r, e) together with stress transformation, we have the three-term expan­
sion of the stress field

or

(75)

where
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/11 J . ( rx . rx) 2/117:0 ~ ( rx)k- 1/2 = -2--- 2asmtx 7:;' cos-
2

+,;' sm -2 = - ---v 2asmtxcos fJ--
2/11 +/12 /11 +/12

-2. 2ro .
ko = ---(-r;' smrx+r;' COStx) = - ---sm(fJ-rx)

/11 + /12 /11 + /12

-/11 ~[ rx txJk l/2 = --- -2-.'- r~(3 cos tx-2) cos-
2

+r;'(3 cos rx+2) sin-
2/11 +/12 asmrx

/11 '0 ~[ (rx). (rx)J= - /11 +/12 V~ cosrxcos fJ- 2" +2smrxsin fJ- 2"

-r l
) = !sin~ -r2) = -cose -r3

) = ~(sin~e+ k_ I
/.
2 cos~e)

r 2 2 r r 2 2 4ak 1/2 2

(76)

-r l ) = !cos~ -r2) = sin eo 2 2 '0
3 3( 3 k li2 3)~) = - cos-e- ---sin-e

2 2 4ak l/2 2
(77)

sin rx cos(fJ - ~)
k- 1/2 _ -------------

4ak
li2 cosrxcos(fJ- ~)+2sinrxsin(fJ-~)'

(78)

It is readily seen that eqns (74) and (75) coincide with eqn (72). It follows from (77) that
the angular distributions for the first two terms, iP), i~I), i~2), i~2), are identical to those
for straight cracks, while the angular distributions for the third term, i~3), i~3) , are different.
Figure 4 shows the angular distribution of stress components for different values of
~ = L d(2ak I/2) with fJ = tx/2. Comparing with the distribution of the straight crack, the
presence of the curvature has significant effect on the character of the angular distribution.

When a -+ 00, the curved crack approaches the case of straight cracks. From eqn (76),
we obtain

2r OO

leO = lim k o = -_Y-

a~oo /11 + /12

1· k-li2 0Im--= .
a~oo 4ak l/2

(79)

Note that 2aOl: is the length of the crack in eqn (79). Comparing amplitudes k; for the curved
crack with kJ for the planar crack with the same crack length yields

( rx)cos fJ--
k_ I / 2 =Jsinrx 2 ko=sin(fJ+ tx)
k'-1/2 rx cos fJ 'leO sin fJ

~ = fY[3cosrxcos(fJ- ~)-2COS(fJ+~)J.kI /2 VSiM 2 2
(80)

CONCLUSIONS

The role of curvature on the stress distribution of curved interfacial crack between
dissimilar isotropic solids has been studied. Using asymptotic expansions for the stress and
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Fig. 4. Stress angular distribution of the third term asymptotic expansion for circular interfacial
crack under antiplane shear.
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curved geometry, the detailed stress and displacement distribution near the crack tip can
be investigated. Based on the analysis from the composite under in-plane and antiplane
shear loading, the following conclusions may be drawn:

(1) The stress exponents and associated stress angular distributions for the first two term
asymptotic expansions are not affected by the constant radius ofcurvature along the
crack interface.

(2) The curvature effect enters in the third-term asymptotic expansion of the stress
distribution for circular interfacial crack.

(3) Under in-plane loading, the third-term asymptotic solution may contain the r1
/
2(ln r)

function. For the interfacial crack with closed tips, the r l
/
2(ln r) term exists if the

second Dundurs' parameter fJ is not zero.
(4) It can be deduced based on the approach that, for any crack along a smooth curve,

the singular field excluding the amplitude is identical to that of a straight crack along
the tangent of the crack. For other types of curved geometry, the curvature may
contribute to the second-term asymptotic solution.
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APPENDIX

~rlI(n, A) 0

0 ~rlI( -n, A)

~9(n, A) -~9( -n,A)

U~I)(n,A) - U~2) ( -n, A)
Ko(A) =

~rlI(O, A) -~rlI(O,A)

~9(0, A) -~9(0,A)

U~I)(O, A) - U~2)(0, A)

U~I)(O, A) - U~2)(0, A)
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- 2JJ., 2JJ.1
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c = cos Alt, S = sin Alt.
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